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Abstract: Collagen fiber alignment derived from second harmonic generation (SHG) 

microscopy images can be important for disease diagnostics. Image processing algorithms are 

needed to robustly quantify the alignment in images with high sensitivity and reliability. 

Fourier transform (FT) magnitude, 2D power spectrum, and image autocorrelation have 

previously been used to extract fiber information from images by assuming a certain 

mathematical model (e.g. Gaussian distribution of the fiber-related parameters) and fitting. 

The fitting process is slow and fails to converge when the data is not Gaussian. Herein we 

present an efficient constant-time deterministic algorithm which characterizes the 

symmetricity of the FT magnitude image in terms of a single parameter, named the fiber 

alignment anisotropy R ranging from 0 (randomized fibers) to 1 (perfect alignment). This 

represents an important improvement of the technology and may bring us one step closer to 

utilizing the technology for various applications in real time. In addition, we present a digital 

image phantom-based framework for characterizing and validating the algorithm, as well as 

assessing the robustness of the algorithm against different perturbations. 

©2017 Optical Society of America 

OCIS codes: (180.6900) Three-dimensional microscopy; (100.2960) Imaging analysis; (180.4315) Nonlinear 

microscopy. 
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1. Introduction 

SHG microscopy is a powerful technology which allows for direct, non-invasive, and label-

free three-dimensional visualization of collagen fiber architecture and extracellular matrix 

(ECM) of biological tissues. Many studies have shown that SHG microscopy can be used for 

disease diagnosis, and links have been established between ECM remodeling and disease 

formation and progression. Specifically, the risk of breast cancer initiation is associated with 

high collagen density [1], and it has been shown that cancer cells interact with ECM to 

promote metastasis [2, 3]. Pathological changes in collagen fiber network, e.g., in fiber 

alignment and waviness, have also been observed in ovarian cancers [4, 5]. In addition to 

cancer, SHG imaging is also useful for detecting fibrosis [6], bone diseases [7, 8], and 

potentially the risk of pre-term birth [9]. To capitalize on the ability of SHG microscopy of 

visualizing ECM, it is highly desirable to have the image-based information interpreted and 

converted into more objective classifications. 

Image processing is playing an increasingly important role in SHG microscopy 

applications. Diseases are complex and often so heterogeneous that visual observation of 

structural changes in one location or from a single image (or even several images) is not 

enough. Thus, automatic quantification in multiple regions is needed. Moreover, it is 

desirable to develop deterministic unbiased algorithms, i.e., ones that can be applied to any 

image regardless of the image acquisition system. Lastly but not the least, processing speed is 

also critical so that the algorithm can be used for real-time analysis and display. 

Commonly used SHG image processing methods can be categorized into two classes. The 

first class, which has been primarily applied so far, is based on extracting physical features 

such as collagen fiber diameter and orientation [10]. The second class consists of entirely 
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computational machine-learning-based approaches which calculate a large matrix of different 

image-based features and then resort to automatic clustering to determine the relevant features 

that best separate the data into the classification groups (e.g. normal vs diseased) [11]. While 

extremely powerful, the disadvantage of the machine-learning approach is its disconnection 

with the physical parameters, which makes it hard to analyze and interpret the results in many 

cases. Selective use of a large number of metrics can often correctly classify a training set but 

the classification criteria might work poorly on another independent, unseen data set (i.e. 

overfitting) [12]; how to avoid overfitting and promote generalization of the learning 

algorithm remains a challenge. 

Collagen fiber alignment is an important physical parameter and has been established as a 

marker in breast cancer [13], bone disease [8] and ovarian cancer [11]. Multiple research 

groups have presented the use of Fourier Transform (FT) to characterize the morphological 

properties of collagen fibers [14–16]. This has been performed in several ways, such as by 

thresholding and fitting the 2D image autocorrelation to a Gaussian function [16] or an ellipse 

[17], or alternatively by fitting the image power spectrum (squared magnitude of the FT 

output) to a line [14], or by fitting the angular distribution to a Gaussian function [8]. The 

fiber properties are then derived from the functional properties. While the previous 

approaches provide an excellent starting point to investigate fiber alignment, they do have 

some limitations. Image thresholding in general is tricky and can depend on the particular 

imaging system and imaging parameters. As a result, thresholding can dramatically influence 

the outcome of any analysis and therefore can be biased. Fitting data to a curve without a 

clear theoretical basis can also be problematic. While in many cases the data can resemble the 

function (for example a Gaussian), when that assumption fails, the results can be incorrect. In 

addition, fitting in general is a slow process, especially when there are multiple unknowns and 

perhaps even more time-consuming if the data is not actually complying with the target form. 

To overcome these limitations, we have developed a deterministic, unbiased approach, which 

does not require fitting or thresholding. In this paper we present this new method along with a 

robust validation, firstly on digital image phantoms and then on practical SHG images of 

biological tissues. The method is fast and robust, which is critical for real-time fiber 

alignment processing in in vivo imaging applications such as SHG endomicroscopy of 

biological tissues [9, 18]. 

2. Fiber alignment anisotropy quantification 

The FT analysis of collagen fiber images provides a powerful tool for quantification of fiber 

alignment. Given an image ( , )I x y  , its 2D FT is calculated as follows where u and v are the 

2D spatial frequency coordinates: 

        2ˆ , FT ( , ) , d d .
j ux vy

x y

I u v I x y I x y e x y


 
 

 

     (1) 
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Fig. 1. Digital phantoms of fibers ranging from high (a) to intermediate (b) and random 

alignment (c). The first column shows the spatial images ( , )I x y   whereas the second column 

shows the corresponding FT magnitude image | Î (u,v)|. The third and fourth columns show 

the angular content distributions of | Î (u,v)| in a linear and polar manner, respectively. The 

computed R’s are shown for each case on the right. 

Figure 1 illustrates how the fiber alignment is translated to the Fourier domain, where 

ˆ  ( , )I u v , the magnitude of the FT of digital phantom images ( , )I x y   (the first column in Fig. 

1; see Section 3 for detailed explanation of how the phantom images are generated) with 

varying degrees of alignment, are shown in the second column. Through comparison, we can 

tell the differences in ˆ  ( , )I u v , where a higher degree of fiber alignment is reflected in an 

increased level of angular non-uniformity around the origin. 

As mentioned above, the alignment is encoded in the angular non-uniformity of ˆ  ( , )I u v  

around the origin. In order to quantify the non-uniformity without involving a fitting 

procedure, we can directly assess the content of ˆ  ( , )I u v  at each angle θ (defined over 0° to 

180°) using polar coordinates ( cos ,  sinu v     ) and integrating over the radial 

coordinate   along a line through the origin (at angle θ) from    to  . This can be written 

as: 

    ˆ cos , sin d .A I


     




   (2) 

Here the function   ( )A   represents angular projections or line integrals/averages of 

ˆ  ( , )I u v  through the origin. This simplifies the problem from 2D to 1D. Now, it is desirable 

to quantify the alignment in terms of a single metric. There are multiple potential ways to 

calculate such a metric based on   ( )A  . We propose a simple method which involves 

distributing   ( )A   on a circle from 0° to 360°, where each real-valued data point of   ( )A   is 

mapped to a complex number (or vector)   2 nn nAa    with the unit vector 2
ˆ 

n
  defined 

as  2
ˆ  cos 2 ,sin 2

n n n    pointing radially along the direction of  2 n . Then we summed up 
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all the vectors into a single sum vector   n

n

R a . For cases where there is a high degree of 

alignment,   ( )A   will be highly polarized and the sum vector R  will have a large magnitude 

 R R . On the other hand if the alignment is random,   ( )A   will be almost uniform, and 

therefore the vectors   na ’s will cancel each other out, and final magnitude R  will be small. 

For convenience, we normalize R such that it has a range from 0 to 1 where 1 represents a 

perfect alignment and 0 represents completely isotropic or random distribution of collagen 

fibers. It is calculated as follows and we refer to it as the angular anisotropy parameter: 

 
  21

1

ˆ

( )

a

n

a

N

nn

N

mm

A
R

A
R

 







 



 (3) 

where 
n  is uniformly distributed from 0 to π with N values. Here Na is the total number of 

angles uniformly distributed between [0, π], and the discrete summation in the numerator is 

essentially a numerical evaluation of the following continuous integral,   2

0
 djA e


  . In 

practice, we found that for a 512×512 phantom or real SHG image, setting Na > 200 is 

sufficient to capture the detailed undulation of   ( )A  , and throughout this report, we choose 

Na = 512 to guarantee numerical accuracy. The FT and angular analyses are shown for cases 

of increasing alignment in Figs. 1(a)-1(c), along with the ground-truth and computed values 

for R  (how to obtain the ground truth is explained shortly). By comparison, the numbers 

correlate well with the observed alignment. 

The above method can be easily implemented with MATLAB, and it took about 28 ms to 

process an image of 512 × 512 pixels on a 3.3-GHz-CPU desktop computer with 3 GB of 

RAM. Thus, it could readily be used for real-time processing and display. 

Also worth noting is the close relation between power spectrum and image 

autocorrelation, i.e., the power spectrum, calculated as    
2

ˆ  , ,S u v I u v , is the FT of the 

image-based autocorrelation. Therefore, these transforms are highly related and can be 

expected to give similar information, although in a slightly different fashion. For example, in 

the Fourier domain, small fibers will result in high frequency content, whereas in the 

autocorrelation (spatial domain) it would result in image content concentrated close to the 

origin. 

As already mentioned, many of the previous alignment analysis methods utilized 

thresholding and/or fitting to a mathematical function to obtain information from the Fourier 

domain (or autocorrelation image). While this may work in many circumstances, it can also 

fail in many other situations. For example, looking at the FT magnitude ˆ  ( , )I u v  and the 

angular distribution in the 2nd and 3rd columns of Fig. 1, a Gaussian fit to the angular 

distribution would not be even close to being perfect (except the uniform alignment case as 

shown in the 3rd column of Fig. 1(a)). 

3. Digital phantom validation and calibration 

The algorithm was characterized under multiple conditions using digital phantoms, i.e., 

images of fibers with various but controlled properties. 

3.1 Digital phantom generation 

The mathematical model of the brightness of a single straight fiber along the y-direction is 

given by: 
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fib 2
, exp rect( / )rect( / )

2 / 2

x
I x y x D y L

c D

 
  

  

 (4) 

where D and L are the fiber diameter and length (Fig. 2), respectively, and c is a parameter 

that defines the contrast which is particularly important when fibers are overlapping. 

The phantom image consisting of multiple fibers (Fig. 2) is generated by superposition of 

myriad fibers with different orientations as follows: 

  phantom fib

1

, ( , ) Rot( )
fN

n n n

n

I x y I x x y y 


     (5) 

where ( ,  )n nx y  defines the center position of the nth fiber and θn its orientation angle. Nf is the 

total number of fibers within the phantom image. The function Rot(θn) represents an operator 

that rotates an image matrix by an angle of θ in the range [0°, 180°]. Note that for overlapping 

fibers, the value of the topmost fiber takes precedence. For phantoms used here, the central 

position of each fiber ( ,  )n nx y  was randomized uniformly within the image area. To generate 

a specific angular distribution, we specified a mean angle   and a range Δ . Then each 

angle is determined as   Δn nr     where   nr  is a random variable following uniform 

distribution in the range [-0.5, 0.5]. 

 

Fig. 2. Phantom generation for validation study. (a) Example of multi-fiber architecture on a 

black background. (b) Cross-sectional intensity profiles of fibers illustrating the influence of 

the contrast parameter c. (c) Illustration of the fibers in (b) in 2D images with a black 

background. 

Knowing the actual value of each n , we can calculate the actual angular anisotropy value 

of a given image phantom as follows: 

 
actual 2  

1

1
ˆ

f

n

N

nf

R
N




   (6) 

where again we have  2
ˆ  cos 2 ,sin 2

n n n   , and Nf is the total number of fibers within the 

phantom image. The actual value 
actualR  is entirely dependent upon the angular distribution 

and represents the actual fiber alignment anisotropy information that we are trying to derive 

based on image analysis. The actual value can then serve as the ground truth for validation. 

We notice that the ground-truth angular anisotropy defined as Eq. (6) in our manuscript is 

complementary to a previously established metric named directional variance or circular 

variance [19], defined as 
1

1
  1

N

n

n

V
N 

  x  for a given set of unit vectors 
1 2  , , , Nx  x    x . 
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Specifically, for the set of unit vector 2  
ˆ

n
  ’s, we have 

actual  1V R  . Furthermore, the 

computed angular anisotropy computedR  defined by Eq. (3) can be regarded as a generalized 

version of above definitions by replacing the constant weight 
1

N
 with a non-uniform 

normalized weight (or probability)  

1

 
( )

n

N

mm

A

A






, and thus it shares similar spirit as being 

complementary to the corresponding circular variance. 

3.2 Digital phantom validation 

To validate the performance of our algorithm, we conducted intensive simulation studies on 

numerous digital phantoms with different fiber morphological parameters. Specifically, for 

each phantom image, we randomized the following morphological parameters: 

 
1) Fiber density (or number of fibers per image): uniformly sampled from 63 to 162   

fibers per phantom image. 

2) Contrast parameter c : randomly selected from 0.1, 0.4, 1.6 and 6.4. Note that once 

selected, the contrast parameter is applied to all fibers within a given phantom image, 

i.e. we assume that all fibers in a phantom field of view share identical cross-sectional 

brightness profile. 

3) Mean fiber orientation angle   [0,  π)  : uniformly sampled from 0 to 180 degrees. 

4) Variance range  Δ [0, ]   spanned by all fibers: uniformly sampled from 0 to 180 

degrees. Therefore the orientation angle   n  of each individual fiber will be uniformly 

sampled within the range 
Δ Δ

  , 
2 2

 
 
 

  
 

. Again, it is Δ  that mainly decides the 

fiber alignment anisotropy computed R . 

5) Central location ( ,  )n nx y  of each fiber: randomly chosen throughout the field of view. 

6) Mean fiber length  L : randomly chosen from the following values: 30, 50, and 70 µm. 

The variance range of fiber length was fixed to be 20 µm in our simulation. That is to 

say, the length of all fibers within a single digital phantom is uniformly sampled from 

one of the following intervals: 2040 µm, 4060 µm, and 6080 µm, and the interval 

to use is randomly selected. These fiber length distributions were chosen based on 

previous report on typical collagen fiber lengths [16], as well as visual estimation of 

real-world SHG images from various collagen-rich tissues [20–22]. 

7) Mean fiber diameter D : randomly chosen from the following values: 1, 2, 3, and 4 

µm (similar to the collagen fiber diameter range in biological tissues [20, 21]). The 

variance range of fiber diameter was fixed to be 1 µm in our simulation. That is to say, 

the diameter of all fibers within a digital phantom is uniformly sampled from one of 

the following intervals: 0.51.5 µm, 1.52.5 µm, 2.53.5 µm, and 3.54.5 µm, and 

the interval to use is randomly selected. 

To fully cover all possible parameter combinations listed above, we generated more than 8 

× 105 phantom images. For each image we calculated the actual angular anisotropy 
actualR  

based on the known angular distribution and compared it with that obtained from the 

proposed approach (Eq. (3)). With all the anisotropy data, we can validate the effectiveness of 
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our algorithm and investigate its robustness against different parameters, as detailed shortly. 

First, by discretizing the actual angular anisotropy 
actualR  into 0.01-wide intervals and 

grouping phantom images according to their 
actualR  values, we can estimate the mean and 

standard deviation of the corresponding computed R’s for each 
actualR  value (i.e. the 

corresponding group of phantom images), as shown in Fig. 3. As can be seen, there is a high 

level of correlation between the two values and the relationship is monotonic and quite linear, 

except when the actual R  exceeds 0.98 (i.e. approaching perfect alignment). Such 

discrepancy stems mainly from the fact that even when the phantom fibers are perfectly 

aligned, the spatial spectrum of the whole image does not reside purely along a single 

direction, but leaks substantially into a wide range of directions in the 2D Fourier domain, as 

exemplified in the 2nd column of Fig. 1(a). And therefore, the corresponding directional 

integral   ( )A   deviates considerably from an ideal delta function, resulting in a computed 

anisotropy R  far below 1.0 (see Fig. 1(a) and Fig. 3). 

Despite the slight decrease of average computed R  when the actual alignment anisotropy R  

approaches 1.0, the overall increasing trend of computed R  with increasing alignment of phantom 

fibers could still be utilized to characterize the alignment of practical SHG images, especially 

considering perfectly aligned collagen fibers barely occur in biological tissues. To further 

investigate the sensitivity of our algorithm to fiber alignment, we conducted ANOVA 

analysis (MATLAB, MathWorks) of the groups of computed R  values (each group corresponds 

to a 0.01-wide interval in 
actualR , as shown in Fig. 3), which yields a p-value = 0, implying 

that there is absolutely significant difference among all the groups (i.e. at least one group is 

significantly different from at least another group). Furthermore, multiple comparison of 

means reveals that, for the majority of 
actual [0.05, 0.95]R  , as long as the difference between 

#1

actualR  and # 2

actualR  exceeds 0.03, there exists a significant difference between the distributions 

of #1

computedR  and # 2

computedR . This reflects the excellent sensitivity of the algorithm, i.e. a small 

difference of ~0.03 in actual R  is enough to yield a statistically different distribution of 

computed R ’s. 

 

Fig. 3. Distribution of the actual and computed angular anisotropy value R. Plotted in the 

figure are the mean value and standard deviation of computed R  versus corresponding 
actualR  

extracted from multiple digital phantoms. The standard deviation is represented by the error 

bars. 
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4. Robustness and dependence on other parameters 

The influence of parameters other than the angular fiber distribution on the image-derived 

computed R  values is important to assess the robustness of the proposed method. If robust, fiber 

diameter, fiber length, fiber density, contrast factor, and noise, which are independent of fiber 

orientation, should have minimal effects on computed R . 

4.1 Fiber diameter and contrast 

Figure 4(a) compares the image-derived anisotropy and actual R values for image phantoms 

with different average fiber diameters, ranging from 1 to 4 microns (similar to the diameter 

range of collagen fibers in biological tissues [20, 21]). While there is some influence from 

fiber diameter on computed R , where the more aligned smaller fibers have a relatively higher 

computed R , the correlation between the image-derived and actual R  values is still very good 

(with correlation coefficients of ~0.977 for D = 1 µm, ~0.963 for D = 2 μm, ~0.936 for D = 3 

μm, and ~0.896 for D = 4 μm cases, respectively). The general trend we found is that thicker 

phantom fibers yield relatively lower computed R  values with higher standard deviations on 

average 

In Fig. 4(b), the fiber contrast parameter c was varied from 0.1, 0.4, 1.6 to 6.4. Again, 

there is slight influence of the contrast parameter c on computed R , but the four pairs of computed R  

and 
actualR ’s correlate very well (with correlation coefficients of ~0.961 for c = 0.1, ~0.925 for 

c = 0.4, ~0.899 for c = 1.6, and ~0.901 for c = 6.4, respectively). We noticed that a larger 

contrast parameter c tends to yield a relatively lower computed R  value. Since fibers with a larger 

contrast parameter appear thicker, as shown in Fig. 2(c), this observation matches well our 

previous observation that thicker fibers tend to yield lower computed R  values, as presented in 

Fig. 4(a). Overall, we find that the proposed method is robust against reasonable variations in 

fiber diameter and contrast, producing a good correlation between the actual and image-

derived R values under various circumstances. 
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Fig. 4. Robustness evaluation of the algorithm against various morphological parameters. The 

average and standard deviation (represented by the error bars) of computedR  values are plotted 

versus 
actualR  for different fiber morphological parameter values (ranges), including: (a) fiber 

diameter, (b) fiber contrast, (c) fiber density, and (d) fiber lengths. 

4.2 Fiber density and length 

Similar as in Section 4.1, we further investigated the robustness of our algorithm against fiber 

density and length, as shown in Figs. 4(c)-4(d). Specifically, to check the effect of fiber 

density on the algorithm, we divided the phantom images used for Fig. 3 into 4 subgroups, 

corresponding to the following fiber density ranges: [63, 87], [88, 112], [113, 137], and [138, 

162]. To check the effect of fiber length on the algorithm, we divided the same set of images 

into 3 subgroups, and each subgroup has fiber length uniformly sampled from one of the 

following intervals: 2040 µm, 4060 µm, and 6080 µm. The similarity between each 

individual curves in Figs. 4(c)-4(d) corroborates that there is no obvious dependence of the 

algorithm performance on fiber length or fiber density. 

4.3 White noise in the spatial frequency domain 

When computing the projection function ( )A  , a white noise-style background residing in 

the Fourier domain (i.e. spatial frequency domain) can contribute to line integral along every 

angle   in Eq. (2) unselectively, thus leading to a considerate quasi-uniform offset to   ( )A  . 

Such quasi-uniform offset will in turn pile up in scalar summation in the denominator of Eq. 

(3), but basically cancel out in the vector summation in the nominator, thereby attenuating the 

informative fluctuation carried by   ( )A   and resulting in reduced computed R . It is noteworthy 

that white noise in the spatial frequency domain corresponds to delta function-style features 

in the image, which is commonly encountered in practical SHG images (e.g. polluted by salt-

and-pepper noise). 
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To investigate the robustness of the proposed method to such Fourier-domain white noise, 

we consider a simplified case with the Fourier-domain angular projection function   ( )A   

modeled as a predominant peak at angle 
0  (corresponding to perfectly aligned fibers in the 

image domain) superposed with a white noise-induced offset b , as given by: 

    0A b       (7) 

where     is the delta function and θ ranges from 0° to 180°. The anisotropy value can then 

be deduced using Eq. (3) as: 

  computed 2

1

1
ˆ

1 n

N

n

n

R A
Nb

 




  (8) 

Figure 5 shows how the computedR  value depends on the white noise-induced offset b. As 

expected, computedR  decreases progressively with stronger white noise-induced offset b . 

Therefore, when comparing R  values between images, one should keep in mind that the 

presence of spatially small features of random orientations could lead to a downward-biased 

estimation of the anisotropy R . In contrast, a uniform or low-spatial frequency image 

background, upon Fourier transform, will contribute to ˆ  ( , )I u v  only locally nearby the origin 

(i.e. u = v = 0), and thus would not exert much influence in practice to the final estimation of 

R. In light of this, one way to mitigate such affect from Fourier-domain white noise is low-

pass filtering the image first (to remove any salt-and-pepper noise) before undertaking the 

anisotropy analysis. 

 

Fig. 5. Pronounced effect of white noise on the absolute R value for a perfectly aligned 

distribution. It is noted that white noise has no effect on the absolute R value for cases of 

completely random fiber orientation. 

5. Tissue imaging validation 

Shown in Fig. 6 are representative results of applying the proposed method to SHG images 

experimentally acquired from ex vivo mouse tail tendon and mouse cervical tissues at 

different gestation time points [9, 21] using a recently developed nonlinear endomicroscopy 

technology as detailed elsewhere [9, 23–25]. Collagen fibers in the mouse tail tendon are 

generally highly aligned, as shown in Fig. 6(a), and the computed R values ranges ~0.2-0.35; 

one can also see that increased waviness of collagen fibers generally leads to lowered R value 

(the 2nd and 3rd columns of Fig. 6(a)). Cervical collagen fibers of normal pregnant mice in 
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the earlier gestation stage (day 6 as shown in Fig. 6(b)) exhibits a higher degree of alignment 

than those in the latter gestation stage (day 18 as shown in Fig. 6(c)), reflecting the dramatic 

remodeling process in cervical collagen architecture during pregnancy [21]. Overall, these 

experimental results demonstrate that the proposed algorithm performs well as expected, i.e., 

the trend in the R values are in accordance with the level of alignment seen visually. 

0.345 0.247 0.221

0.139 0.126 0.117

(a)

(b)

0.078 0.0490.062

(c)

 

Fig. 6. Application of the proposed algorithm to SHG images acquired from various types of 

biological tissues. (a) Highly aligned collagen fibers from mouse tail tendon. (b) Moderately-

aligned cervical collagen fibers of normal pregnant mice at gestation day 6. (c) More 

randomized cervical collagen fibers of normal pregnant mice at gestation day 18. All images 

shown here were acquired using the nonlinear endomicroscope we recently developed [23]. 

The excitation conditions were ~10 mW for mouse tail tendon (a), and of ~40 mW for cervical 

tissue sections (b-c) at 890 nm. Ten raw frames were averaged for (a) while twenty for (b-c), 

corresponding to an effective frame acquisition time of ~3.8 s (a) and ~7.6 s (b-c), 

respectively. The computed R’s are shown at the upper-left corner for each image. Scale bars: 

20 µm. 

6. Conclusion 

We developed an algorithm for quantification of collagen fiber alignment in SHG microscopy 

images. The method was shown to be robust by validation on digital phantoms. It provides an 

improvement over previous related approaches in terms of speed and its unbiasedness. The 

method provides a single parameter output about the alignment, and could be very easy to use 

for clinical applications of the SHG imaging technology. 
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